
VR 16 VR 16HH

Plastic mould steel

Main characteristics and applications

VR16 is a Pre-hardened stainless martensitic Chrome-Molybdenum steel with excellent toughness, good polishability, improved machinability and excellent resistance to corrosion.

Main benefits of steel with excellent corrosion resistance are:

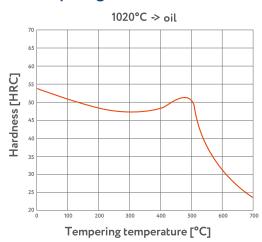
- Lower mould maintenance cost .
- Higher production performance due to the lower production cost (cooling channels are not affected by corrosion).

Applications:

- plastic moulds.
- particularly for corrosive plastic as PVD.
- Dies for plastic extrusion.
- Mould for household appliances.

2 Chemical composition (typical; in weight %)

С	Mn	Si	Cr	Мо	Ni	Р	S	
0.28	0.9	0.30	14	1	0.7	0.008	0.003	


3 Production technology

EAF - LF - VD - Forging - Rolling - Heat treatment QT

4 US specification

In according to standard EN10228-3 Class 4 and standard SEP 1921 Class E/e

8 Tempering curve

5 Delivery condition

VR16 is delivered in quenched and tempered condition: VR16, Standard version: hardness range 280 - 325 HB (29 - 35 HRC)

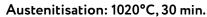
VR16HH, High hardness: hardness range 350 - 390HB (38 – 42 HRC)

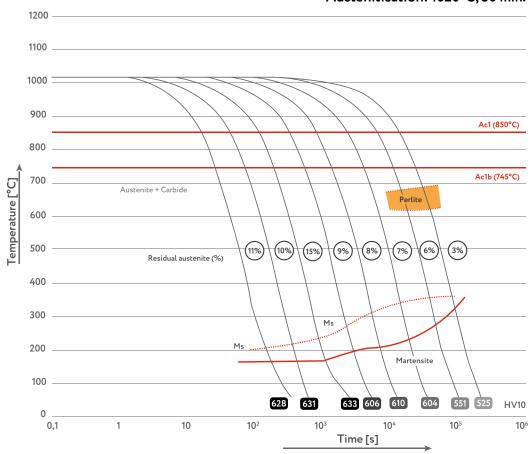
6 Microstructure

W1.2316	VR16
50X Martensitic	50X Homogenous
structure	microstructure,
with carbides	without carbides

7 Physical properties (reference values)

	20°C	100°C	250°C	500°C
Thermal expansion coefficient (10-6/K)	10.5	10.5	10.9	11.7
Thermal conductivity (W/mk)	23.4	23.7	24	-
Young modulus (Kn/mm2)	218	213	205	180





9 Heat treatment

TREATMENT	TEMPERATURE	HOLDING TIME (HT)	COOLING	COMMENTS
Annealing	Heat to 770 - 820 °C	Min. H.T. for 2 minute /mm	Furnace up to 600°C than in air	-
Stress relieving	Heat to 550 - 600 °C	Min. H.T. for 2 minute /mm	Air or furnace	To be carried out after machining, is recommended to eliminate the residual stresses induced by mechanical working
Hardening	Preheating to 600- 700°C. Austenitizing to 990 - 1040 °C	Min. H.T. for 1 minute /mm	Polymer or gas air	Qunched hardness 50 HRC
Tempering	-	-	Air	To be carried out after hardening. 2nd Tempering must be performed to max 30°C below tempering temperature

10 C.C.T. curve

